Challenges and Solutions for Private and Reproducible Environmental Exposure Assessment at Scale

Cole Brokamp

Division of Biostatistics and Epidemiology Cincinnati Children's Hospital Medical Center

January 12, 2021

Table of Contents

Background

•00000

- 1 Background

Background 00000

> Geocoding Converting a string of text into spatial coordinates or boundaries

Geomarker Any geospatial measure that influences or predicts health

Background

Geocoding Converting a string of text into spatial coordinates or boundaries

Geomarker Any geospatial measure that influences or predicts health

place $(+ \text{ time}) \rightarrow \text{estimating past "exposures"}$

- ► Geomarkers are the most powerful predictor of disease, disorder, injury, and mortality
- ▶ Data and tools needed for high resolution spatiotemporal geomarker assessment at a population level

Background

00000

- ► Geomarkers are the most powerful predictor of disease, disorder, injury, and mortality
- ▶ Data and tools needed for high resolution spatiotemporal geomarker assessment at a population level

- Practical usage for exposure assessment is hindered by
 - large data + inefficient manual data curation
 - the need for technical expertise and software skills
 - privacy restrictions

Protected Health Information

- Confidentiality of research subjects must be safeguarded
- ► HIPAA-defined "Safe Harbor" provision prohibits sharing of identifiers and quasi-identifiers, such as:
 - time finer than a calendar year
 - spatial boundary with < 20,000 residents

Protected Health Information

- Confidentiality of research subjects must be safeguarded
- ► HIPAA-defined "Safe Harbor" provision prohibits sharing of identifiers and quasi-identifiers, such as:
 - time finer than a calendar year
 - spatial boundary with < 20,000 residents
- Sharing PHI
 - consent often not obtained for unforeseen future analyses
 - retrospective consent often not feasible + consent bias
 - IRB and institutional DUA approvals can be lengthy and have different requirements
 - transmission of PHI to a third party often not possible

Protected Health Information

- Confidentiality of research subjects must be safeguarded
- ► HIPAA-defined "Safe Harbor" provision prohibits sharing of identifiers and quasi-identifiers, such as:
 - time finer than a calendar year
 - spatial boundary with < 20,000 residents
- Sharing PHI
 - consent often not obtained for unforeseen future analyses
 - retrospective consent often not feasible + consent bias
 - IRB and institutional DUA approvals can be lengthy and have different requirements
 - transmission of PHI to a third party often not possible
- Presents challenges when integrating geomarkers into research studies and clinical applications

Problems with Current Approaches for Multi-Site Studies

Anonymization

- geomasking, date shifting, generalization
- must balance decrease in precision with analysis needs

Problems with Current Approaches for Multi-Site Studies

- Anonymization
 - geomasking, date shifting, generalization
 - must balance decrease in precision with analysis needs
- Independent Geomarker Assessment
 - specialized expertise and technical skills required at each site
 - differences in methods introduce differential error and bias downstream health associations

Problems with Current Approaches for Multi-Site Studies

- Anonymization
 - geomasking, date shifting, generalization
 - must balance decrease in precision with analysis needs
- Independent Geomarker Assessment
 - specialized expertise and technical skills required at each site
 - differences in methods introduce differential error and bias downstream health associations
- Existing Software Approaches
 - commercial options are cost prohibitive and aren't designed for batch operations
 - closed source geocoder prevents transparency and reproducibility

Vision

Background

1 Curated and standardized library that researchers can utilize for secure, efficient, automated, and reproducible linkage of geomarkers to their own protected health and geolocation data.

00000 Vision

- 1 Curated and standardized library that researchers can utilize for secure, efficient, automated, and reproducible linkage of geomarkers to their own protected health and geolocation data.
- 2 A generalized framework for geomarker curation and computation to which exposure scientists can contribute.

Vision

- 1 Curated and standardized library that researchers can utilize for secure, efficient, automated, and reproducible linkage of geomarkers to their own protected health and geolocation data.
- 2 A generalized framework for geomarker curation and computation to which exposure scientists can contribute.

- FAIR (findable, accessible, interoperable, reusable) data
- ► Reproducible using computable exposures
- Portable for sharing and mobility of compute

Spatiotemporal Geomarkers

Table of Contents

- 1 Background
- 2 DeGAUSS
- Spatiotemporal Geomarkers
- 4 Conclusion

DEcentralized Geomarker Assessment for mUlti Site Studies

https://degauss.org

Bringing Computation to Data

Bringing Computation to Data

- Decentralized but reproducible and standardized
- Container framework that reads and writes CSV files
- No extensive computational resources
- No geospatial or computing expertise required
- ▶ PHI is never exposed to a third party or the internet

DeGAUSS

- Decentralized but reproducible and standardized
- Container framework that reads and writes CSV files
- No extensive computational resources
- No geospatial or computing expertise required
- ▶ PHI is never exposed to a third party or the internet

DeGAUSS

- Decentralized but reproducible and standardized
- Container framework that reads and writes CSV files
- No extensive computational resources
- No geospatial or computing expertise required
- PHI is never exposed to a third party or the internet

- ► Free and open source
- ► Automated and continuous documentation and integration
- ► Metadata curation and integration
- Multiple user entry-points (data, geomarker assessment code, Docker/OCI images, GUI, stand-alone application)
- Community supports and contributions

Anonymity and Reidentification

- Anonymity can ensure small, but non-zero, chance of reidentification
 - published examples of reidentification attacks by researchers (Sweeney 2017, Boronow 2020)
 - reidentification tasks are rare and often unsuccessful (Emam 2011, Emam 2015)
- Don't conflate re-identification of identifiers with re-identification of quasi-identifiers
 - quasi-identifiers recovered by merging with extant datasets
 - institutional restrictions on sharing of quasi-identifiers

Table of Contents

Background

000000

- 3 Spatiotemporal Geomarkers

- Pre-computed data "products"
 - produced by from interpolation/prediction exposure models
 - often uses publicly available spatiotemporal datasets
 - ambient air pollution, climate, noise, wildfires, crime
- High resolution
 - ullet often < 1 km sq. exposures covering entire country
 - daily estimates covering 2000 2021
- Exposure timing
 - used to study acute, short-term, and long-term exposures
 - development-based temporal averages during early life
- ► Large file sizes require data transmission, when most of data usually not used
- Most approaches currently require sharing PHI with model developer for addition of estimates

Approach

Background

000000

Safe Harbor For Downloading Spatial Subsets

Applications

- ► ECHO, eMERGE, government organizations, electronic health data warehouses
 - different levels of consent, data management and coordination centers
- Applied within DeGAUSS containers for several different daily, high resolution ambient pollution estimates
 - https://degauss.org/pm
 - https://degauss.org/schwartz

Advantages

- Prevents download of unnecessary spatial and/or temporal "slices" of data
- Decreases time and resources needed by end user to run software without sharing PHI
- Automated downloading, parsing, and spatiotemporal joining

version**

DeGAUSS

image*

Background

ghcr.io/degauss-org/geocoder	batch geocoding	version v3.0.2
ghcr.io/degauss-org/census_block_group	census block group and tract FIPS	version v0.4.1
<pre>ghcr.io/degauss-org/st_census_tract</pre>	spatiotemporal census tract FIPS 1970 - 2020	version v0.1.2
<pre>ghcr.io/degauss-org/dep_index</pre>	census tract-level deprivation index	version v0.1
ghcr.io/degauss-org/roads	proximity and length of major roads	version v0.1
ghcr.io/degauss-org/aadt	average annual daily traffic	version v0.1.1
ghcr.io/degauss-org/greenspace	enhanced vegetation index	version v0.2
ghcr.io/degauss-org/nlcd	land cover (imperviousness, land use, greenness)	version v0.1
ghcr.io/degauss-org/pm	daily PM2.5	version v0.1.3
ghcr.io/degauss-org/narr	daily weather data (air temperature, humidity, etc)	version v0.1
<pre>ghcr.io/degauss-org/drivetime</pre>	distance and drive time to various care sites	version v1.0
degauss/schwartz_grid_lookup	schwartz grid for spatiotemporal pollutant models	version v0.4.1
degauss/schwartz	daily PM2.5, NO2, and O3 concentrations	version v0.5.5

description

https://degauss.org/available_images

Table of Contents

Background

000000

- 1 Background
- 2 DeGAUSS
- Spatiotemporal Geomarkers
- 4 Conclusion

- ► GUI interfaces for researchers and scientists
- Metadata curation for data science workflows and clinical informatics pipelines
- Cloud Optimized Geotiffs (COG)
- ▶ Integrating methods for "deidentifying" area-level data
- ► Homomorphic encryption
- ► Facilitating community contributions

Discussion

- \triangleright G x E x **Time**
 - geomarkers and epigenome change over time
 - report back for spatiotemporal exposures
 - less focus on privacy/precision tradeoffs for time
- Geospatial data collection and sharing
 - empower people to donate their own spatiotemporal data collected via cloud-hosted location trackers
 - think about consent in the future: limited sharing of pseudo-identifiers only?

Discussion

- ► HIPAA Safe Harbor not sufficient to guarantee anonymity, but should this be our goal in research studies?
- Updated guidance & policies needed
 - zip code...
 - details on spatial and temporal generalization strategies
 - update examples to use census-defined boundaries
 - reidentification of pseudo-identifiers versus identifiers
 - how to deal with datasets that may be considered de-identified now, but will change to identified after unforeseen datasets and methods arise?
- Must maintain reproducibility and privacy

Thank You

Background

- https://degauss.org
- @degauss-org
- cole.brokamp@cchmc.org
- https://colebrokamp.com
- @cole brokamp

DeGAUSS is supported by NIH R01LM013222 & U2COD0233754

